Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625839

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
2.
Nat Commun ; 12(1): 7092, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1561304

ABSTRACT

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Subject(s)
Epithelial Cells/virology , Interferon Type I/immunology , Interferons/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/immunology , Humans , Immunity, Innate , Kinetics , Nasal Mucosa/cytology , Nasal Mucosa/immunology , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Viral Tropism , Virus Replication/drug effects , Interferon Lambda
3.
Physiol Rep ; 9(20): e15075, 2021 10.
Article in English | MEDLINE | ID: covidwho-1485552

ABSTRACT

Exercise has substantial health benefits, but the effects of exercise on immune status and susceptibility to respiratory infections are less clear. Furthermore, there is limited research examining the effects of prolonged exercise on local respiratory immunity and antiviral activity. To assess the upper respiratory tract in response to exercise, we collected nasal lavage fluid (NALF) from human subjects (1) at rest, (2) after 45 min of moderate-intensity exercise, and (3) after 180 min of moderate-intensity exercise. To assess immune responses of the lower respiratory tract, we utilized a murine model to examine the effect of exercise duration on bronchoalveolar lavage (BAL) fluid immune cell content and lung gene expression. NALF cell counts did not change after 45 min of exercise, whereas 180 min significantly increased total cells and leukocytes in NALF. Importantly, fold change in NALF leukocytes correlated with the post-exercise fatigue rating in the 180-min exercise condition. The acellular portion of NALF contained strong antiviral activity against Influenza A in both resting and exercise paradigms. In mice undergoing moderate-intensity exercise, BAL total cells and neutrophils decreased in response to 45 or 90 min of exercise. In lung lobes, increased expression of heat shock proteins suggested that cellular stress occurred in response to exercise. However, a broad upregulation of inflammatory genes was not observed, even at 180 min of exercise. This work demonstrates that exercise duration differentially alters the cellularity of respiratory tract fluids, antiviral activity, and gene expression. These changes in local mucosal immunity may influence resistance to respiratory viruses, including influenza or possibly other pathogens in which nasal mucosa plays a protective role, such as rhinovirus or SARS-CoV-2.


Subject(s)
Exercise/physiology , Influenza A virus/immunology , Leukocytes/immunology , Lung/immunology , Nasal Lavage Fluid/immunology , Neutrophils/immunology , Adolescent , Adult , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Gene Expression , Humans , Leukocytes/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Nasal Lavage/methods , Nasal Lavage Fluid/cytology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Neutrophils/metabolism , Time Factors , Young Adult
4.
Sci Rep ; 11(1): 15927, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1345584

ABSTRACT

Previous studies focusing on the age disparity in COVID-19 severity have suggested that younger individuals mount a more robust innate immune response in the nasal mucosa after infection with SARS-CoV-2. However, it is unclear if this reflects increased immune activation or increased immune residence in the nasal mucosa. We hypothesized that immune residency in the nasal mucosa of healthy individuals may differ across the age range. We applied single-cell RNA-sequencing and measured the cellular composition and transcriptional profile of the nasal mucosa in 35 SARS-CoV-2 negative children and adults, ranging in age from 4 months to 65 years. We analyzed in total of ~ 30,000 immune and epithelial cells and found that age and immune cell proportion in the nasal mucosa are inversely correlated, with little evidence for structural changes in the transcriptional state of a given cell type across the age range. Orthogonal validation by epigenome sequencing indicate that it is especially cells of the innate immune system that underlie the age-association. Additionally, we characterize the predominate immune cell type in the nasal mucosa: a resident T cell like population with potent antiviral properties. These results demonstrate fundamental changes in the immune cell makeup of the uninfected nasal mucosa over the lifespan. The resource we generate here is an asset for future studies focusing on respiratory infection and immunization strategies.


Subject(s)
COVID-19/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Adolescent , Adult , COVID-19/genetics , Child , Child, Preschool , Female , Humans , Immunity, Cellular , Immunity, Innate , Infant , Male , Middle Aged , Nasal Mucosa/cytology , Nasal Mucosa/metabolism , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Young Adult
5.
Nature ; 592(7852): 122-127, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104508

ABSTRACT

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Virus Replication/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Bronchi/cytology , Bronchi/virology , COVID-19/epidemiology , Cell Line , Cells, Cultured , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Founder Effect , Gene Knock-In Techniques , Genetic Fitness , Humans , Male , Mesocricetus , Mice , Nasal Mucosa/cytology , Nasal Mucosa/virology , Protein Binding , RNA, Viral/analysis , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
6.
STAR Protoc ; 2(1): 100356, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1062653

ABSTRACT

This protocol enables the testing of drugs against infection of epithelial cells with SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), using pseudo-typed replication deficient vesicular stomatitis virus particles (pp-VSV) presenting the SARS-CoV-2 spike protein. After treating human volunteers with amitriptyline, an approved antidepressant and inhibitor of the acid sphingomyelinase, freshly isolated nasal epithelial cells were infected ex vivo and infection levels were quantified. This protocol offers the possibility to rapidly test the efficacy of potential drugs in the fight against COVID-19. For complete details on the use and execution of this protocol, please refer to Carpinteiro et al. (2020).


Subject(s)
Antiviral Agents/pharmacology , COVID-19/prevention & control , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Sphingolipids/metabolism , Cell Culture Techniques , Cells, Cultured , Epithelial Cells/cytology , Humans , Nasal Mucosa/cytology , Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus
9.
Tohoku J Exp Med ; 251(1): 27-30, 2020 05.
Article in English | MEDLINE | ID: covidwho-326880

ABSTRACT

The number of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly increased, although the WHO declared a pandemic. However, drugs that function against SARS-CoV-2 have not been established. SARS-CoV-2 has been suggested to bind angiotensin-converting enzyme 2, the receptor of the SARS coronavirus. SARS coronavirus and coronavirus 229E, the cause of the common cold, replicate through cell-surface and endosomal pathways using a protease, the type II transmembrane protease. To examine the effects of protease inhibitors on the replication of coronavirus 229E, we pretreated primary cultures of human nasal epithelial (HNE) cells with camostat or nafamostat, each of which has been used for the treatment of pancreatitis and/or disseminated intravascular coagulation. HNE cells were then infected with coronavirus 229E, and viral titers in the airway surface liquid of the cells were examined. Pretreatment with camostat (0.1-10 µg/mL) or nafamostat (0.01-1 µg/mL) reduced the titers of coronavirus 229E. Furthermore, a significant amount of type II transmembrane protease protein was detected in the airway surface liquid of HNE cells. Additionally, interferons have been reported to have antiviral effects against SARS coronavirus. The additive effects of interferons on the inhibitory effects of other candidate drugs to treat SARS-CoV-2 infection, such as lopinavir, ritonavir and favipiravir, have also been studied. These findings suggest that protease inhibitors of this type may inhibit coronavirus 229E replication in human airway epithelial cells at clinical concentrations. Protease inhibitors, interferons or the combination of these drugs may become candidate drugs to inhibit the replication of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Gabexate/analogs & derivatives , Guanidines/pharmacology , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Virus Replication/drug effects , Benzamidines , Betacoronavirus/drug effects , COVID-19 , Cells, Cultured , Coronavirus 229E, Human/enzymology , Coronavirus 229E, Human/physiology , Culture Media, Conditioned , Epithelial Cells/virology , Esters , Gabexate/pharmacology , Humans , Nasal Mucosa/cytology , Pandemics , Primary Cell Culture , SARS-CoV-2 , Serine Endopeptidases/physiology , Spike Glycoprotein, Coronavirus/metabolism , Viral Load
10.
Respir Investig ; 58(3): 155-168, 2020 May.
Article in English | MEDLINE | ID: covidwho-154704

ABSTRACT

BACKGROUND: Coronavirus 229E (HCoV-229E), one of the causes of the common cold, exacerbates chronic obstructive pulmonary disease (COPD) and bronchial asthma. Long-acting muscarinic antagonists and ß2-agonists and inhaled corticosteroids inhibit the exacerbation of COPD and bronchial asthma caused by infection with viruses, including HCoV-229E. However, the effects of these drugs on HCoV-229E replication and infection-induced inflammation in the human airway are unknown. METHODS: Primary human nasal (HNE) and tracheal (HTE) epithelial cell cultures were infected with HCoV-229E. RESULTS: Pretreatment of HNE and HTE cells with glycopyrronium or formoterol decreased viral RNA levels and/or titers, the expression of the HCoV-229E receptor CD13, the number and fluorescence intensity of acidic endosomes where HCoV-229E RNA enters the cytoplasm, and the infection-induced production of cytokines, including IL-6, IL-8, and IFN-ß. Treatment of the cells with the CD13 inhibitor 2'2'-dipyridyl decreased viral titers. Pretreatment of the cells with a combination of three drugs (glycopyrronium, formoterol, and budesonide) exerted additive inhibitory effects on viral titers and cytokine production. Pretreatment of HNE cells with glycopyrronium or formoterol reduced the susceptibility to infection, and pretreatment with the three drugs inhibited activation of nuclear factor-kappa B p50 and p65 proteins. Pretreatment with formoterol increased cAMP levels and treatment with cAMP decreased viral titers, CD13 expression, and the fluorescence intensity of acidic endosomes. CONCLUSIONS: These findings suggest that glycopyrronium, formoterol, and a combination of glycopyrronium, formoterol, and budesonide inhibit HCoV-229E replication partly by inhibiting receptor expression and/or endosomal function and that these drugs modulate infection-induced inflammation in the airway.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Budesonide/pharmacology , Coronavirus/physiology , Cytokines/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Formoterol Fumarate/pharmacology , Glycopyrrolate/pharmacology , Muscarinic Antagonists/pharmacology , Nasal Mucosa/cytology , Trachea/cytology , Virus Replication/drug effects , CD13 Antigens/metabolism , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL